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three-dimensional object will we see? Our theory is that the vision
system will pick the simplest object from among the infinite set of
possibilities. We examine a number of examples and find that in each
case the data is consistent with the theory.

This work is based on the pioneering ideas of Solomonoff and Kol-
mogorov, and on the more recent "minimum description length" con-
cepts of Rissanen.



1. Introduction.

When we look at certain line-drawings, we see three-dimensional objects. The ques-
tion is why. Why see in three dimensions? Why not just see the two-dimensional
images?

When we look at the two-dimensional line-drawing shown in figure 1. for ex-
ample, we see a three-dimensional wire-frame cube. But there is no necessity about
this. The image could just as well have been interpreted as a two-dimensional figure
lying in the image plane. Why the three-dimensional perception?

Our theory is that we see the three-dimensional object rather than the two-
dimensional image because the object is simpler. And, given the choice, the simpler
solution will be preferred by the human vision system. The theory will be made
clearer in what follows, and a number of examples will be considered in detail. We
will see that our theory is supported by the data.

What do we mean by simplicity? As will be explained, we define the complexity
of an object as the number of bits in a binary representation of that object. How-
ever, since we want the complexity of an object to remain constant when the object
moves, we want our binary representation to be "pose-independent"; that is, we
want the representation to be the same, regardless of the translation or rotation of
the object. Thus, we need to construct a binary, pose-independent representation.

Why might the vision system prefer a simple (i.e., short) representation over
a complex (long) one? There could be many reasons, but the most obvious one is
that simple representations require less storage space. Since the cognitive system
needs to remember many of its visual inputs, it seems reasonable to assume that
storage economy is a primary consideration; this in turn dictates the use of simple
representations.

Thus our theory suggests an answer to the question of why we see a three-
dimensional object rather than a two-dimensional image when we look at figure 1.
However, there remains a second, equally important question. Given that we are
going to see a three-dimensional object, why a cube? After all, there are infinitely
many three-dimensional wire-frame objects that project to figure 1. Why pick a Ac..t .o

cube? -1TTS - li

As regards this second question, our theory is that, among all the objects that WiG lt!.
project to figure 1, the cube is the simplest. We will see that here too the data is ItkW% ,t [,.,,

consistent with the theory.
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Fig. 1. A simple line-drawing.



3

In Section 2 we define the complexity of wire-frame objects and describe our
multi-level representation scheme. In Section 3 we present our experimental results:
we examine the complexity of thirteen specific line-drawings and of the objects we
perceive when we look at these drawings. In Section 4 we discuss the historical
antecedents of our ideas, and we look briefly at related work in computer vision. The
Appendices give the numerical specification of the objects used in the experiments
and the discussion.

Result-oriented readers may wish to avoid the technical details and turn di-
rectly to Section 3.

2. Descriptive Complexity and Levels of Representation.

We define the descriptive complexity (complexity, for short) of a wire-frame object
as the number of bits in a pose-independent, binary representation of that object.
If we think of this representation as a "code" for the object, the complexity is then
simply the code-length.

We will actually deal with three levels of representation, of which the code is
the innermost level. We start our discussion with what we call the "conventional"
representation. At this level we are dealing with a pose-dependent, alphanumeric
representation. From there we go to the second, or intermediate, level, which is
a pose-independent, alphanumeric representation. Finally, we go to the binary,
pose-independent representation, which allows us directly to measure descriptive
complexity.

Programs for generating these representations have been implemented. In
this software system representations at the first level are referred to as "Objects";
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representations at the second, intermediate, level are referred to as "Forms"; and

representations at the third, binary, level as "Codes".

These three levels are discussed in sections 2.1, 2.2, and 2.3. In section 2.4 we
discuss the programs that translate among the three levels.

2.1 Objects: The conventional representation.

We first introduce what we call the conventional representation of objects and
images. For example, the following expression represents a wire-frame cube of a
particular size and in a particular location:

CUBE-OBJECT[1l

(OBJECT

:POINTS ((-2.25 -1.27 -0.79) (0.45 -1.27 -2.34) (0.72 1.81 -1.88) (-1.98 1.81
-0.32) (-0.72 -1.81 1.88) (1.98 -1.81 0.32) (2.25 1.27 0.79) (-0.45 1.27 2.34))

:LINES ((0 1) (12) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

The list following ":POINTS" represents a list of three-dimensional points;
these are the eight vertices of CUBE-OBJECT, expressed with respect to a fixed
coordinate system. The list following ":LINES" represents a list of the twelve edges
in the cube; each pair of integers on this list represents the indices of the points
connected by a line; thus, the first pair, (0 1), means that the zeroth point, (-2.25
-1.27 -0.79), is connected by a straight-line segment to the first point, (0.45 -1.27
-2.34).

This representation of objects is intuitive and easy to work with. It has the
drawback, however, that it is sensitive to the "pose" of the object; i.e., it varies
as the object is translated or rotated with respect to the coordinate system. For
example, if the above object is rotated 45 degrees around a vertical axis through
its center, its representation becomes:

CUBE-OBJECT[21

(OBJECT
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:POINTS ((-2.15 -1.27 1.04) (-1.34 -1.27 -1.97)(-0.82 1.81 -1.83) (-1.63 1.81
1.18) (0.82 -1.81 1.83) (1.63 -1.81 -1.18) (2.15 1.27 -1.04) (1.34 1.27 1.97))

:LINES ((0 1) (12) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

We represent line-drawings images the same way we represent objects, except
that in the case of images all z-coordinates are equal to zero. (That is, we consider
images to be objects all of whose points lie in the x-y plane (the "image plane").
Thus, we treat images as a subset of objects.)

For example, the line-drawing in figure 1, is represented as follows. (This image
is in fact the orthographic projection into the image-plane of CUBE-OBJECT[I].)

CUBE-IMAGE[I]

(OBJECT

:POINTS ((-2.25 -1.27 0.0) (0.45 -1.27 0.0) (0.72 1.81 0.0) (-1.98 1.81 0.0) (-0.72
-1.81 0.0) (1.98 -1.81 0.0) (2.25 1.27 0.0) (-0.45 1.27 0.0))

:LINES ((0 1) (12) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

If this image is translated or rotated in the image plane, its representation
changes. For example if we rotate CUBE-IMAGE[I] by 45 degrees around its
center, we get:

CUBE-IMAGE[2]

(OBJECT

:POINTS ((-0.7 -2.49 0.0) (1.21 -0.58 0.0) (-0.77 1.79 0.0) (-2.68 -0.12 0.0) (0.77
-1.79 0.0) (2.68 0.12 0.0) (0.7 2.49 0.0) (-1.21 0.58 0.0))

:LINES ((0 1) (12) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

2.2 Forms: The intermediate representation.

The intermediate representation, the "form," is based on the lengths of the lines
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in a fully-connected (or "fully-triangulated") object, that is, an object in which all

pairs of points are connected by lines.

For example, the form corresponding to CUBE-OBJECT[l], above, is as fol-

lows:

CUBE-FORM[1]

(FORM

:NUMBER-OF-POINTS 8

:VISIBLE-LINES ((0 1) (0 3) (0 4) (1 2) (1 5) (2 3) (2 6) (3 7) (4 5) (4 7) (5
6) (6 7))

:LINES-AND-LENGTHS (((0 1) 3.12) ((0 2) 4.41) ((0 3) 3.12) ((0 4) 3.12) ((0
5) 4.41) ((0 6) 5.4) ((0 7) 4.41) ((1 2) 3.12) ((1 3) 4.41) ((1 4) 4.41) ((1 5) 3.12) ((1
6) 4.41) ((1 7) 5.4) ((2 3) 3.12) ((2 4) 5.4) ((2 5) 4.41) ((2 6) 3.12) ((2 7) 4.41) ((3
4) 4.41) ((3 5) 5.4) ((3 6) 4.41) ((3 7) 3.12) ((4 5) 3.12) ((4 6) 4.41) ((4 7) 3.12) ((5
6) 3.12) ((5 7) 4.41) ((6 7) 3.12)))

This tells us (a) the number of points in a cube (eight); (b) the visible-lines,
which are identical to the lines in the conventional representation (though not

necessarily in the same order); and the lengths of alllines, i.e., the distances between
all pairs of points (twenty-eight lengths). For example, the second element in the
lines-and-lengths list is ((0 2) 4.41). This means that the distance from the zeroth
to the second point is 4.41 units. This particular line is not among the lines of the
original cube-object; i.e., it is not a "visible line."

This representation is independent of the pose of the object. Thus the form
corresponding to CUBE-OBJECT[21, above, will be identical to CUBE-FORM[l].

The programs for generating forms from objects and objects from forms are
discussed below in Section 2.4. Since forms are pose-independent, it is clear that
if we go from object to form and then back to object, we will not, in general, get
back the object in the original pose (see Section 2.4.4).
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2.3 Codes: The binary representation.

The third level of representation, the "code," is the binary encoding of the form.
The length of this code for a given object is our measure of descriptive complexity

of the object.

For example, the code corresponding to CUBE-FORM[I] (and therefore to

CUBE-OBJECT[1]) is:

CUBE-CODE[I]

(11100001111000101010011010100011100001110
11011111001010010001010100101100101001011101
01001100101010011010010100111000010000100110
10001001000100110011010001001001101000010000
10001111101111001110111110111111101011000101
10100111111111010011000101100)

Since the codes are independent of the pose of the original object, the code
for CUBE-OBJECT[2] is identical to the above. (This identity, of course, is a
consequence of the fact that the intermediate representations, on which the codes
are based, are pose-independent.)

The programs for generating codes from forms and forms from codes are dis-
cussed in the following section.

2.4 Programs for generating representations.

The following programs were implemented for moving among the levels of repre-
sentation: code-from-object (form-from-object followed by code-from-form); and
object-from-code (form-from-code followed by object-from-form).
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2.4.1 The program form-from-object.

The process for generating forms from objects is entirely straightforward. Basically,
the process consists of first generating the "fully-connected" object, (expressed in
the object-representation), then measuring the lengths of all the lines, and finally
generating the lines-and-lengths list. Each element of this list consists, first, of a
pair of integers, where each integer represents the index of an object-point (indices
start with zero), and, second, the distance from the point designated by the first
index to the point designated by the second index.

It is also necessary to record the number of points in the object and the "visible
lines", i.e., the indices of the points in the original object that are connected by
line-segments.

It is clear that the form type of representation is ambiguous with respect to
mirror images. It is therefore possible, by going from an object to the form and
then back to the object, that the mirror image object will be recovered. In our
present study, this is not a problem since we are interested in the code length; and
the code lengths of an object and its mirror image are equal.

2.4.2 The program code-from-form.

The process of generating codes from forms is somewhat more involved.

As we have seen, forms contain floating point numbers. There are many pos-
sible ways to encode such numbers. The approach taken here (following Rissanen
[5]) is to specify a level of precision (number of decimal places), and to transform

the floating-point numbers into integers by first multiplying by ten raised to the
number of decimal places and then rounding to the nearest integer. The integers
are then encoded. Thus, our codes are conditioned on the number of decimal places
selected. In this study, the number is arbitrarily fixed at four.

However, since integers consist of a variable number of digits, even the encod-
ing of integers is not entirely straightforward. Still following Rissanen, we use a
"universal code" devised by Elias [1]. This code allows us to concatenate the codes
for the integers in a list (without restriction on the size of the integers) and to
decode the resulting binary string into the original list of integers.
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In order to obtain economy in coding, since many of the integers tend to repeat
for a given object, the program constructs a dictionary of all of the integers to be
encoded. Then, instead of encoding a particular integer, the program encodes the

index of the entry for that integer in the dictionary (this index, of course, is itself
an integer). The program also encodes the dictionary itself.

The example of CUBE-CODE[1] seen above can be understood in terms of the
following partitioning.

CUBE-CODE[l]

(- 1 1 1o0 0 0 0 - 1111 0 0 0 - 10 1 0 10 - 0 110 1 0 1 0 0 0 111 0 0
00111011011111001'010010001010100101100101001
01110101001100101010011 0101001 1000--0100
00100110100010010001001100110100010010011010

000100001000-1111 1011110011101111101111 1110
1011000101101001111111 1010011000101100-)

The first partition (1 1 1 0 0 0 0) is the code for the number of points (eight).
The second (11 1 1 0 0 0) is the code for the number of visible-lines (twelve).
The third partition (1 0 1 0 1 0) is the code for one plus the number of decimal
places (five). The fourth partition is the encoding of the visible-lines list. The
fifth partition is the encoding of the line-lengths. The final partition encodes the
dictionary (which in this example is (3.1199 4.4122 5.4038) after rounding to four
decimal places but prior to conversion to integers). In the present example the total
code length, hence the complexity of CUBE-OBJECT[l], is 245.

2.4.3 The program form-from-code.

The program form-from-code is quite straightforward and requires very little discus-
sion. The program reconstitutes the form from the code given as argument. Since
the code style of representation contains the codes of the original floating-point
numbers only up to a given level of precision, the decoding process reconstitutes
the form only up to that level of precision. Thus, if the number of decimal places
specified to the program code-from-form is four, the decoded form will contain the
original floating-point numbers rounded to four decimal places.
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2.4.4 The program object-from-form.

The program for reconstructing an object from a form is somewhat complicated,
and we will describe it here only in outline.

The problem that the program is required to solve can be thought of as follows.
We are given a set of sticks of various lengths; each stick has a small integer written
at each end (these correspond to points); the program must assemble all the sticks
in such a way that wherever sticks touch the touching ends have the same integers
written on them.

The object is constructed iteratively, one point at a time. To add a new point
to a partially constructed object having four or more points, we pick three "sticks",
each of which has one end at the already-constructed object and the other end at
the desired new point. Thus, we have a tetrahedron of which we know the location
of three points and the line-lengths from these three points to the fourth point. We
can solve for the location of the fourth point, but there are two solutions. However,
in general, only one of these is consistent with other line-lengths from the fourth
point to other points in the already-constructed part of the object. By looking at
these other lengths, we determine which of the solutions is the correct one.

It is immediately clear, since the form is pose-independent, that the program
object-from-form cannot return the object in the original pose. What the program
does is to return an object in a "standard pose". The first point (the one corre-
sponding to the index 0) is placed at the origin. The second point (corresponding
to the index 1) is placed on the positive z-axis. The third point is placed on the
positive half of the z-y plane. The fourth point has a negative x-coordinate. The
fact that object-from-form does not return the object in its original pose is not a
problem for us. We are basically interested only in the length of the code represen-
tation. The only reason we need the program object-from-form at all is to prove to
ourselves that the codes were correctly generated.
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3. Experiments dealing with the complexity of images and perceived
objects.

3.1 Introduction to experiments.

In this section we discuss two experiments dealing with line-drawing images and
the three-dimensional objects perceived when we look at these images.

In these experiments we use thirteen object-models. These are illustrated
in figures 2, 3, and 4, and precise numerical specifications of these models in a
particular pose are given in Appendix I. The line-drawings used are illustrated in
the left-hand column of figures 2, 3 and 4. They are obtained by orthographic
projection from the models in Appendix I in the particular pose given. (Thus, to
obtain the numerical specification of these line-drawings, set the z-coordinates of
the models in Appendix I to zero)

We are concerned with the three-dimensional objects that are perceived when
we look at these line-drawings. What are these? We have reason to think that the
perceived objects, in these thirteen cases, are identical or approximately identical
to our thirteen models.

It must be emphasized that this is by no means always the case: it is easy to
design examples in which the object seen when we look at a line-drawing is not at
all the same as the model that generated the drawing. For example, consider the
model COMPARISON-OBJECT-A, given in Appendix II and illustrated in figure
5. In this case, the object we perceive when we look at the leftmost image in figure
5 is strikingly dissimilar to the model that generated the image. (Further examples
are given by Maril 14].)

However, experimentation demonstrates that if the perceived object is not
identical to the model, then, when the model is rotated, the object will be perceived
as deforming. This provides us with a test: if a rotating model is perceived as solid
(non-deforming), we can be reasonably sure that the object perceived when we look
at one of its views is the same as the model. In fact, the thirteen models in our
experiments pass this test.
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Fig. 2. Three views of CUBE, STAIRCASE, PYRAMID, TABLE and SLANTED-SQUARE.
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Fig. 3. Three viewa of CONCAVE- WEDGE, HEX-PRIM, SPACE-STATION

ASYMMETRIC-OBJECT and REQ ULAR-TET
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Fig. 4. Three views of SINE-SURFACE, GAUSSIAN-SURFACE, and SPHERE-PATCH
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Fig. 5. Three views of COMPARISON-OBJECT-A. The representation is given in Appendix II.

In the second and third views, the object has been rotated plus and minus ten degrees.

For a discussion of the complexity of this object, see Appendix II.
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3.2 The complexity of images and perceived objects.

Based on the preceding, we assume that the thirteen three-dimensional objects

listed in Appendix I are the objects that are perceived when we look at the left-

hand images in figures 2, 3, and 4. Table 1 gives the descriptive complexity of the

thirteen images and of the corresponding perceived objects.

All images and objects were first expressed in the conventional representation

(Appendix I). They were then translated into the binary codes discussed above,
using four decimal places of accuracy. The number of bits of the binary codes, as

explained, were used as the measure of complexity.

It will be seen that in every instance the complexity of the image is greater

than the complexity of the object. That is, the objects are simpler, in conformity
with our theory. This may serve to explain why we see the three-dimensional object

rather than the two-dimensional image.

For a discussion of the complexity of COMPARISON-OBJECT-A (figure 5),
see Appendix II.
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Object Object Image
Complexity Complexity

CUBE 245 560
STAIRCASE 1787 2497
PYRAMID 153 288
TABLE 362 518
SLANTED-SQUARE 104 157
CONCAVE-WEDGE 433 727
HEX-PRISM 647 1324
SPACE-STATION 166 376
ASYMMETRIC-OBJECT 924 1027
REGULAR-TET 72 202
SINE-SURFACE 68326 87108
GAUSSIAN-SURFACE 57918 119550
SPHERE-PATCH 28454 57463

Table 1. The complexity of objects and their images.
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3.3 The complexity of distorted objects whose images are held
constant.

The preceding experiment suggests an answer to the question of why we see three-
dimensional objects rather than two-dimensional images. But it says nothing about
which three-dimensional objects we see.

In the experiment discussed in the present section, we use a distortion factor
to distort objects while holding their images constant. It is clear that if we start
with an object in a fixed pose (an object in our first representation), we can change
the z-coordinates of any of the points without changing the orthographic projection
of the object. The distortion factor is a single number which multiplies all the z-
coordinates in an object; as a result of the multiplication, the object distorts while
its orthographic projection remains unchanged.

For each of the objects used in the preceding experiment (by assumption,
these are the objects perceived when we look at the thirteen images used in the
preceding experiments), we applied six distortion factors: 0, 0.25, 0.75, 1, 1.5, and
5. A distortion factor of zero sets all z-coordinates equal to zero, and therefore
makes the object identical to the image. A distortion factor of one leaves all z-
coordinates unchanged, and therefore leaves the object undistorted. Each of the
resulting seventy-eight objects were converted to binary code, and the lengths of
the codes are presented in Table 2.

It will be seen that in all thirteen cases the minimum of each row occurs at
a distortion factor of one. This means that the simplest object is the undistorted
object, i.e., by our assumption, the object that is perceived when we look at the
image. This suggests that the vision system, in accordance with our theory, selects
the simplest object, that is, the one with smallest complexity, from among the
possible objects that project to the image.
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Distortion factor

0 0.25 0.75 1 1.5 5

CUBE 560 553 545 245 557 627
STAIRCASE 2497 2471 2419 1787 2460 2664
PYRAMID 288 288 288 153 298 335
TABLE 518 519 519 362 534 592
SLANTED-SQUARE 157 158 162 104 172 179
CONCAVE-WEDGE 727 725 725 433 757 827
HEX-PRISM 1324 1320 1303 647 1338 1446
SPACE-STATION 376 376 375 166 381 423
ASYMMETRIC-OBJECT 1027 1038 1060 924 1084 1149
REGULAR-TET 202 202 205 72 206 233
SINE-SURFACE 87108 87076 86904 68326 87828 91908
GAUSSIAN-SURFACE 119550 119288 120566 57918 122972 130572
SPHERE-PATCH 57463 57400 57543 28454 57991 60235

Table 2. The complexity of distorted objects whose images are
held constant.
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4. Historical antecedents and related work.

4.1 Historical antecedents.

The present work is based on the pioneering ideas of Solomonoff [6] and Kolmogorov
[2], and on the more recent "minimum description length" concepts of Rissanen [5].

Solomonoff was concerned with the problem of induction. Given a long se-
quence of symbols, can we predict the next symbol? Solomonoff defined the con-
cept of the description of a sequence S to be a binary string which, when input to
a certain machine, will cause that machine to generate S as output. He was able to
show that the description-length (number of bits in the description of S) is related
to the probability of S, and therefore to the probability of any next symbol.

Kolmogorov's interest lay in the foundations of probability and information
theory. He was able to show that the length of the shortest binary "program" that
generates as output an arbitrary sequence S is related to the probability and the
information content of S. Unfortunately, he also showed that the problem of finding
such shortest programs is non-computable.

Thus, in both Solomonoff and Kolmogorov we find the concept of description
length at the foundation of the theory. Some twenty years later, the idea was
incorporated into Rissanen's principle of minimum description length (MDL), with
application to statistical parameter estimation.

In Rissanen's approach, one assumes that the observable data comes from
one member of a class of known models. (It is this restrictive assumption that
allows the approach to generate computable results.) To estimate the parameters
of the model that generated the data, we first formulate an expression for the
model and the deviations of the data from the model. We then minimize the
binary representation of this expression over the space of parameters; this yields
the parameter estimates.

4.2 Discussion.

All of these techniques (as well as ours in the present paper) suffer from one short-
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coming: they are contingent on the choice of coding technique. Thus Rissanen
uses (as do we) a particular code, due to Elias [1], for representing the integers. A
different coding scheme would give different results. It is necessary, therefore, for
the reader to think of the definition of the underlying principle as incorporating
the particular coding scheme used. (In our case, the reader should think of our
definition of complexity as incorporating our particular coding scheme.)

It is an essential requirement in all of these approaches that the description of
the given data must be a true code from which the data can be recovered. That is,
the number of bits must be the length of an invertible representation. We adhere to
this requirement in the present work (even though, for our very restricted purpose,
it might not be absolutely essential).

4.3 Related vision research.

In a recent paper, Leclerc [3] demonstrated the power of some of these ideas in the
realm of computer vision. When we look at a grey-scale image, such as a black-and-
white photograph of a natural scene, an important aspect of our perception consist
of boundaries between regions (discontinuities between areas in which certain mea-
surements change continuously). Leclerc was able to show that these discontinuities
could be found by proper encoding of the data and the model, and by then min-
imizing the code-length. His results appear to agree with the perceptions of the
human vision system.

In a more recent paper, Marill [4] dealt with the three-dimensional perception of
line-drawings. The problem was to devise a program which, given the representation
of a line-drawing, would return the representation of the same three-dimensional
object that a human observer sees when looking at that line-drawing.

To solve this problem, Marill proposed the idea that, in generating percepts
of three-dimensional objects, the human vision system minimizes a certain aspect
of the object. He demonstrated that the principle of minimum standard-deviation
of angles (MSDA) was able to generate good results over a variety of examples. In
accordance with the MSDA principle, one selects, from among the infinite number
of three-dimensional objects that project to the given image, that particular object
for which the standard-deviation of the angles is minimized.

It is entirely possible that the MSDA principle is a special case of the process
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presented in the present paper. However, that remains to be proved.

Finally, it should be pointed out that while the present paper restricts itself

to questions of two-dimensional images and three-dimensional objects, there are
also interesting questions to be asked about dimensions higher than three. Why

do we see three-dimensional objects rather than four-dimensional objects or ob-

jects of higher dimensions? Are three-dimensional objects simpler than the higher-

dimensional objects of which they are the projections? For now, such questions

must remain open.
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Appendix I.

The following are the representations of the thirteen three-dimensional wire-
frame model-objects used in the experiments discussed above. To obtain the images
used in the experiments, set the z-coordinates to zero.

CUBE

(OBJECT

:POINTS ((-2.25 -1.27 -0.79) (0.45 -1.27 -2.34) (0.72 1.81 -1.88) (-1.98 1.81
-0.32) (-0.72 -1.81 1.88) (1.98 -1.81 0.32) (2.25 1.27 0.79) (-0.45 1.27 2.34))

:LINES ((0 1) (1 2) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

STAIRCASE

(OBJECT

:POINTS ((-1.74 -1.24 0.74) (0.86 -0.85 -0.71) (0.86 1.33 -0.13) (0.0 1.2 0.36)
(0.0 0.47 0.16) (-0.87 0.34 0.65) (-0.87 -0.38 0.45) (-1.74 -0.51 0.93) (0.14 -2.08 3.88)
(2.74 -1.69 2.43) (2.74 0.49 3.01) (1.87 0.36 3.49) (1.87 -0.37 3.3) (1.0 -0.5 3.78) (1.0
-1.22 3.59) (0.14 -1.35 4.07))

:LINES ((0 1) (1 2) (2 3) (3 4) (4 5) (5 6) (6 7) (7 0) (8 9) (9 10) (10 11) (11
12) (12 13) (13 14) (14 15) (15 8) (0 8) (1 9) (2 10) (3 11) (4 12) (5 13) (6 14) (7
15)))

PYRAMID

(OBJECT

:POINTS ((-0.83 -1.33 3.56) (2.63 -1.33 1.56) (0.66 -0.64 -1.86) (-2.8 -0.64 0.14)
(0.35 3.94 1.6))

:LINES ((0 1) (1 2) (2 3) (3 0) (0 4) (1 4) (2 4) (3 4)))
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TABLE

(OBJECT

:POINTS ((-0.67 1.5 3.76) (3.67 1.07 1.3) (1.67 0.47 -2.11) (-2.67 0.9 0.35)
(-0.67 -0.47 4.11) (3.67 -0.9 1.65) (1.67 -1.5 -1.76) (-2.67 -1.07 0.7))

:LINES ((0 1) (1 2) (2 3) (3 0) (0 4) (1 5) (2 6) (3 7)))

SLANTED-SQUARE

(OBJECT

:POINTS ((1.52 -3.08 -1.06) (1.52 2.12 -4.06) (0.48 5.08 1.06) (0.48 -0.12 4.06))

:LINES ((0 1) (1 2) (2 3) (3 0) (0 2) (1 3)))

CONCAVE-WEDGE

(OBJECT

:POINTS ((-0.49 -0.11 -0.75) (1.6 -2.32 -1.62) (-1.04 1.92 -2.64) (-2.02 0.07
2.01) (2.49 2.11 0.75) (4.57 -0.1 -0.12) (1.93 4.14 -1.14) (0.95 2.29 3.51))

:LINES ((0 1) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

HEX-PRISM

(OBJECT

:POINTS ((-0.33 1.33 0.33) (-0.14 0.51 -0.22) (-0.71 -0.3 -0.13) (-1.48 -0.3 0.51)
(-1.67 0.51 1.06) (-1.1 1.33 0.97) (1.48 0.3 2.49) (1.67 -0.51 1.94) (1.1 -1.33 2.03)

1(0.33 -1.33 2.67) (0.14 -0.51 3.22) (0.71 0.3 3.13))

:LINES ((0 1) (1 2) (2 3) (3 4) (4 5) (0 5) (6 7) (7 8) (8 9) (9 10) (10 11) (6
11) (0 6) (1 7) (2 8) (3 9) (4 10) (5 11)))
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SPACE-STATION

(OBJECT

:POINTS ((-2.51 -0.59 -1.15) (0.9 1.03 -2.48) (2.51 0.59 1.15) (-0.9 -1.03 2.48)
(0.93 -2.57 -0.73) (-0.93 2.57 0.73))

:LINES ((l 2) (2 3) (0 1) (0 3) (4 0) (4 1) (4 2) (4 3) (5 0) (5 1) (5 2) (5 3) (0
2) (1 3)))

ASYMMETRIC-OBJECT

(OBJECT

:POINTS ((-2.39 -5.85 3.74) (-0.77 -2.67 -2.99) (-2.12 0.46 -3.91) (-4.25 0.56
0.09) (1.0 -4.93 5.96) (4.04 -1.18 -1.71) (0.6 2.71 -1.89) (-1.1 2.41 1.72))

:LINES ((0 1) (1 2) (2 3) (3 0) (4 5) (5 6) (6 7) (0 4) (1 5) (2 6) (3 7) (4 7)))

REGULAR-TET

(OBJECT

:POINTS ((-0.22 0.16 0.56) (3.54 0.16 -0.81) (1.86 3.57 0.44) (2.83 0.73 3.08))

:LINES ((0 1) (0 2) (0 3) (1 2) (1 3) (2 3)))

SINE-SURFACE

(OBJECT

:POINTS ((-3.35 -1.33 1.75) (-2.95 -0.77 2.15) (-2.55 -0.2 2.55) (-2.15 0.37 2.95)
(-1.75 0.93 3.35) (-3.17 -1.19 1.36) (-2.77 -0.62 1.76) (-2.37 -0.05 2.16) (-1.97 0.51
2.56) (-1.57 1.08 2.96) (-2.97 -1.06 0.99) (-2.57 -0.49 1.39) (-2.17 0.07 1.79) (-1.77
0.64 2.19) (-1.37 1.2 2.59) (-2.76 -0.96 0.64) (-2.36 -0.4 1.04) (-1.96 0.17 1.44) (-1.56
0.73 1.84) (-1.16 1.3 2.24) (-2.51 -0.91 0.32) (-2.11 -0.35 0.72) (-1.71 0.22 1.12) (-1.31
0.78 1.52) (-0.91 1.35 1.92) (-2.23 -0.91 0.04) (-1.83 -0.35 0.44) (-1.43 0.22 0.84) (-
1.03 0.78 1.24) (-0.63 1.35 1.64) (-1.91 -0.96 -0.21) (-1.51 -0.4 0.19) (-1.11 0.17 0.59)
(-0.71 0.73 0.99) (-0.31 1.3 1.39) (-1.56 -1.06 -0.43) (-1.16 -0.49 -0.03) (-0.76 0.07
0.37) (-0.36 0.64 0.77) (0.04 1.2 1.17) (-1.19 -1.19 -0.62) (-0.79 -0.62 -0.22) (-0.39
-0.05 0.18) (0.01 0.51 0.58) (0.41 1.08 0.98) (-0.8 -1.33 -0.8) (-0.4 -0.77 -0.4) (0.0 -0.2
0.0) (0.4 0.37 0.4) (0.8 0.93 0.8) (-0.41 -1.48 -0.98) (-0.01 -0.91 -0.58) (0.39 -0.35
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-0.18) (0.79 0.22 0.22) (1.19 0.79 0.62) (-0.04 -1.6 -1.17) (0.36 -1.04 -0.77) (0.76
-0.47 -0.37) (1.16 0.09 0.03) (1.56 0.66 0.43) (0.31 -1.7 -1.39) (0.71 -1.13 -0.99) (1.11
-0.57 -0.59) (1.51 0.0 -0.19) (1.91 0.56 0.21) (0.63 -1.75 -1.64) (1.03 -1.18 -1.24)
(1.43 -0.62 -0.84) (1.83 -0.05 -0.44) (2.23 0.51 -0.04) (0.91 -1.75 -1.92) (1.31 -1.18
-1.52) (1.71 -0.62 -1.12) (2.11 -0.05 -0.72) (2.51 0.51 -0.32) (1.16 -1.7 -2.24) (1.56
-1.13 -1.84) (1.96 -0.57-1.44) (2.36 0.0 -1.04) (2.76 0.56 -0.64) (1.37 -1.6 -2.59) (1.77
-1.04 -2.19) (2.17 -0.47 -1.79) (2.57 0.09 -1.39) (2.97 0.66 -0.99) (1.57 -1.48 -2.96)
(1.97 -0.91 -2.56) (2.37 -0.35 -2.16) (2.77 0.22 -1.76) (3.17 0.79 -1.36) (1.75 -1.33
-3.35) (2.15 -0.77 -2.95) (2.55 -0.2 -2.55) (2.95 0.37 -2.15) (3.35 0.93 -1.75))

:LINES ((0 5) (5 10) (10 15) (15 20) (20 25) (25 30) (30 35) (35 40) (40 45)
(45 50) (50 55) (55 60) (60 65) (65 70) (70 75) (75 80) (80 85) (85 90) (1 6) (6 11)
(11 16) (16 21) (21 26) (26 31) (31 36) (36 41) (41 46) (46 51) (51 56) (56 61) (61
66) (66 71) (71 76) (76 81) (81 86) (86 91) (2 7) (7 12) (12 17) (17 22) (22 27) (27
32) (32 37) (37 42) (42 47) (47 52) (52 57) (57 62) (62 67) (67 72) (72 77) (77 82)
(82 87) (87 92) (3 8) (8 13) (13 18) (18 23) (23 28) (28 33) (33 38) (38 43) (43 48)
(48 53) (53 58) (58 63) (63 68) (68 73) (73 78) (78 83) (83 88) (88 93) (4 9) (9 14)
(14 19) (19 24) (24 29) (29 34) (34 39) (39 44) (44 49) (49 54) (54 59) (59 64) (64
69) (69 74) (74 79) (79 84) (84 89) (89 94) (0 1) (1 2) (2 3) (3 4) (5 6) (6 7) (7 8)
(8 9) (10 11) (11 12) (12 13) (13 14) (15 16) (16 17) (17 18) (18 19) (20 21) (21 22)
(22 23) (23 24) (25 26) (26 27) (27 28) (28 29) (30 31) (31 32) (32 33) (33 34) (35
36) (36 37) (37 38) (38 39) (40 41) (41 42) (42 43) (43 44) (45 46) (46 47) (47 48)
(48 49) (50 51) (51 52) (52 53) (53 54) (55 56) (56 57) (57 58) (58 59) (60 61) (61
62) (62 63) (63 64) (65 66) (66 67) (67 68) (68 69) (70 71) (71 72) (72 73) (73 74)
(75 76) (76 77) (77 78) (78 79) (80 81) (81 82) (82 83) (83 84) (85 86) (86 87) (87
88) (88 89) (90 91) (91 92) (92 93) (93 94)))

GAUSSIAN-SURFACE

(OBJECT

:POINTS ((-3.08 -4.18 4.63) (-3.2 -3.16 4.42) (-3.32 -2.14 4.22) (-3.47 -1.16
3.96) (-3.68 -0.25 3.6) (-3.97 0.57 3.1) (-4.32 1.32 2.49) (-4.7 2.03 1.82) (-5.08 2.75
1.17) (-2.09 -4.03 4.35) (-2.14 -2.93 4.26) (-2.18 -1.83 4.19) (-2.27 -0.78 4.03) (-2.46
0.16 3.7) (-2.77 0.95 3.16) (-3.18 1.64 2.46) (-3.64 2.26 1.67) (-4.09 2.9 0.89) (-1.09
-3.87 4.08) (-1.07 -2.69 4.12) (-1.03 -1.5 4.18) (-1.07 -0.39 4.12) (-1.24 0.57 3.83)
(-1.57 1.35 3.25) (-2.03 1.96 2.45) (-2.57 2.5 1.52) (-3.09 3.05 0.62) (-0.12 -3.76 3.76)
(-0.04 -2.51 3.9) (0.05 -1.25 4.05) (0.06 -0.08 4.07) (-0.09 0.9 3.81) (-0.44 1.65 3.21)
(-0.95 2.21 2.32) (-1.54 2.68 1.3) (-2.12 3.17 0.3) (0.79 -3.71 3.33) (0.89 -2.44 3.5)
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(1.0 -1.16 3.69) (1.03 0.03 3.74) (0.88 1.02 3.49) (0.53 1.76 2.88) (0.0 2.31 1.96)

(-0.61 2.75 0.9) (-1.21 3.22 -0.14) (1.61 -3.76 2.76) (1.69 -2.51 2.9) (1.78 -1.25 3.05)
(1.79 -0.08 3.07) (1.64 0.9 2.81) (1.29 1.65 2.21) (0.78 2.21 1.32) (0.19 2.68 0.3)
(-0.39 3.17 -0.7) (2.38 -3.87 2.08) (2.4 -2.69 2.12) (2.43 -1.5 2.18) (2.4 -0.39 2.12)
(2.23 0.57 1.83) (1.9 1.35 1.25) (1.43 1.96 0.45) (0.9 2.5 -0.48) (0.38 3.05 -1.38) (3.11
-4.03 1.35) (3-06 -2.93 1.26) (3.01 -1.83 1.19) (2.92 -0.78 1.03) (2.73 0.16 0.7) (2.42

0.95 0.16) (2.01 1.64 -0.54) (1.56 2.26 -1.33) (1.11 2.9 -2.11) (3.85 -4.18 0.63) (3.73
-3.16 0.42) (3.61 -2.14 0.22) (3.46 -1.16 -0.04) (3.25 -0.25 -0.4) (2.96 0.57 -0.9) (2.61
1.32 -1.51) (2.23 2.03 -2.18) (1.85 2.75 -2.83))

:LINES ((0 1) (1 2) (2 3) (3 4) (4 5) (5 6) (6 7) (7 8) (9 10) (10 11) (11 12)
(12 13) (13 14) (14 15) (15 16) (16 17) (18 19) (19 20) (20 21) (21 22) (22 23) (23
24) (24 25) (25 26) (27 28) (28 29) (29 30) (30 31) (31 32) (32 33) (33 34) (34 35)
(36 37) (37 38) (38 39) (39 40) (40 41) (41 42) (42 43) (43 44) (45 46) (46 47) (47
48) (48 49) (49 50) (50 51) (51 52) (52 53) (54 55) (55 56) (56 57) (57 58) (58 59)
(59 60) (60 61) (61 62) (63 64) (64 65) (65 66) (66 67) (67 68) (68 69) (69 70) (70
71) (72 73) (73 74) (74 75) (75 76) (76 77) (77 78) (78 79) (79 80) (0 9) (1 10) (2

11) (3 12) (4 13) (5 14) (6 15) (7 16) (8 17) (9 18) (10 19) (11 20) (12 21) (13 22)
(14 23) (15 24) (16 25) (17 26) (18 27) (19 28) (20 29) (21 30) (22 31) (23 32) (24
33) (25 34) (26 35) (27 36) (28 37) (29 38) (30 39) (31 40) (32 41) (33 42) (34 43)
(35 44) (36 45) (37 46) (38 47) (39 48) (40 49) (41 50) (42 51) (43 52) (44 53) (45
54) (46 55) (47 56) (48 57) (49 58) (50 59) (51 60) (52 61) (53 62) (54 63) (55 64)
(56 65) (57 66) (58 67) (59 68) (60 69) (61 70) (62 71) (63 72) (64 73) (65 74) (66
75) (67 76) (68 77) (69 78) (70 79) (71 80)))

SPHERE-PATCH

(OBJECT

:POINTS ((0.25 3.89 -0.78) (-0.55 3.75 -0.11) (-1.28 3.35 0.51) (-1.92 2.72 1.04)

(-2.41 1.89 1.45) (-2.71 0.92 1.71) (-2.82 -0.11 1.79) (-2.71 -1.15 1.71) (-2.41 -2.11
1.45) (-1.92 -2.94 1.04) (-1.28 -3.58 0.51) (-0.55 -3.98 -0.11) (0.25 -4.11 -0.78) (0.91
3.75 0.02) (0.15 3.62 0.66) (-0.57 3.23 1.26) (-1.18 2.62 1.77) (-1.65 1.82 2.17) (-1.95
0.89 2.41) (-2.05 -0.11 2.5) (-1.95 -1.11 2.41) (-1.65 -2.04 2.17) (-1.18 -2.84 1.77)
(-0.57 -3.46 1.26) (0.15 -3.84 0.66) (0.91 -3.98 0.02) (1.53 3.35 0.75) (0.85 3.23 1.33)
(0.21 2.89 1.87) (-0.34 2.34 2.33) (-0.77 1.62 2.68) (-1.03 0.78 2.91) (-1.12 -0.11
2.98) (-1.03 -1.01 2.91) (-0.77 -1.84 2.68) (-0.34 -2.56 2.33) (0.21 -3.11 1.87) (0.85
-3.46 1.33) (1.53 -3.58 0.75) (2.07 2.72 1.39) (1.5 2.62 1.86) (0.98 2.34 2.3) (0.53
1.89 2.68) (0.19 1.3 2.96) (-0.03 0.62 3.15) (-0.1 -0.11 3.21) (-0.03 -0.84 3.15) (0.19
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-1.53 2.96) (0.53 -2.11 2.68) (0.98 -2.56 2.3) (1.5 -2.84 1.86) (2.07 -2.94 1.39) (2.47
1.89 1.88) (2.08 1.82 2.21) (1.71 1.62 2.52) (1.39 1.3 2.79) (1.15 0.89 2.99) (0.99
0.41 3.12) (0.94 -0.11 3.16) (0.99 -0.63 3.12) (1.15 -1.11 2.99) (1.39 -1.53 2.79) (1.71
-1.84 2.52) (2.08 -2.04 2.21) (2.47 -2.11 1.88))

:LINES ((0 1) (1 2) (2 3) (3 4) (4 5) (5 6) (6 7) (7 8) (8 9) (9 10) (10 11) (11
12) (13 14) (14 15) (15 16) (16 17) (17 18) (18 19) (19 20) (20 21) (21 22) (22 23)
(23 24) (24 25) (26 27) (27 28) (28 29) (29 30) (30 31) (31 32) (32 33) (33 34) (34
35) (35 36) (36 37) (37 38) (39 40) (40 41) (41 42) (42 43) (43 44) (44 45) (45 46)
(46 47) (47 48) (48 49) (49 50) (50 51) (52 53) (53 54) (54 55) (55 56) (56 57) (57
58) (58 59) (59 60) (60 61) (61 62) (62 63) (63 64) (0 13) (1 14) (2 15) (3 16) (4
17) (5 18) (6 19) (7 20) (8 21) (9 22) (10 23) (11 24) (12 25) (13 26) (14 27) (15
28) (16 29) (17 30) (18 31) (19 32) (20 33) (21 34) (22 35) (23 36) (24 37) (25 38)
(26 39) (27 40) (28 41) (29 42) (30 43) (31 44) (32 45) (33 46) (34 47) (35 48) (36
49) (37 50) (38 51) (39 52) (40 53) (41 54) (42 55) (43 56) (44 57) (45 58) (46 59)
(47 60) (48 61) (49 62) (50 63) (51 64)))
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Appendix II.

The following is the representation of COMPARISON-OBJECT-A, discussed
in Section 3.1 and illustrated in figure 5.

COMPARISON-OBJECT-A

(OBJECT

:POINTS ((-2.25 -1.27 0.0) (0.45 -1.27 -2.0) (0.72 1.81 4.0) (-1.98 1.81 -6.0)
(-0.72 -1.81 8.0) (1.98 -1.81 -10.0) (2.25 1.27 12.0) (-0.45 1.27 -14.0))

:LINES ((0 1) (12) (2 3) (3 0) (4 5) (5 6) (6 7) (7 4) (0 4) (1 5) (2 6) (3 7)))

We can compare this object with its orthographic projection (left-hand image
in figure 5). Unlike the other objects examined, this object is clearly not the object
perceived when we look at the image. In fact, we know what object is perceived: it is
CUBE-OBJECT, illustrated in figure 2. And we already know its complexity: 245.
We would expect, therefore, that the complexity of COMPARISON-OBJECT-A
will be greater than 245.

And this is indeed the case; the complexity of COMPARISON-OBJECT-A is
825, which would tend to explain why the vision system prefers CUBE-OBJECT
over COMPARISON-OBJECT-A when looking at the image.

The image itself, as we know, has a complexity of 560, which would tend to
explain why the vision system prefers CUBE-OBJECT to the image.


